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Abstract

A crack in the shape of a spherical cap is subjected to a static loading. The exact solution for the crack-opening
displacement is obtained using a method based on dual series equations and Laplace transforms. For shallow caps, the
solution agrees with an asymptotic theory for perturbed penny-shaped cracks. © 2001 Elsevier Science Ltd. All rights
reserved.

1. Introduction

Let Q be a loaded crack in a three-dimensional elastic solid. Assume that  is bounded and that the crack
edge 0€ is a simple, smooth, closed curve. The form of the stresses near 0L is known (Leblond and Torlai,
1992), but the stress-intensity factors themselves can only be found by solving a boundary-value problem:
they cannot be obtained from a local analysis near the edge.

There is only one non-planar € for which the boundary-value problem can be solved exactly, and that is
a spherical cap. In fact, there are several Russian papers on this problem. One of the earliest is that of
Ziuzin and Mossakovskii (1970), but their analysis was subsequently criticised by Prokhorova and Solov’ev
(1976); both papers consider axisymmetric loadings, and use representations in terms of analytic functions
of a complex variable. A method for non-axisymmetric problems was developed more recently by Popov
(1992). He reduced the problems to some one-dimensional integral equations, whose desired solutions were
shown to have non-integrable end-point singularities. A method based on dual series equations was
sketched by Martynenko and Ulitko (1979). Their method is simple, in principle (we use it below), but it is,
nevertheless, complicated when detailed results are required. A striking feature of these papers is that they
do not contain mutual comparisons. Thus, it is difficult to know what the correct solution actually is, for
any particular loading!

Consequently, we decided to re-work the problem. The main purpose of the calculation is to obtain a
benchmark solution, so that other techniques (such as those based on solving a boundary integral equation
numerically) can be validated. We have also confirmed the results for a shallow spherical cap by comparing
with an asymptotic theory for perturbed penny-shaped cracks (Martin, 2000).
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The method used here is first described in the context of a model problem for Laplace’s equation. It
consists of patching separated solutions together in spherical polar coordinates, leading to some dual series
equations, which are then reduced to an integro-differential equation. We solve this equation using Laplace
transforms. We then generalise the method to the elasticity problem, which is much more complicated. It
leads to a pair of coupled integro-differential equations, which are essentially those obtained previously by
Martynenko and Ulitko (1979). We solve these using Laplace transforms. We also derive asymptotic ap-
proximations for the stress-intensity factors, valid for shallow spherical-cap cracks.

2. A model problem: potential flow past a rigid spherical cap

Before embarking on the elasticity problem, it is instructive to consider a simpler problem for Laplace’s
equation. The techniques used to solve this problem will generalise to the much more complicated crack
problem. Thus, consider a rigid spherical cap, given by

r=c¢, 0<0<oa 0<¢<2m,
where r, 0 and ¢ are spherical polar coordinates. We want to solve Laplace’s equation, V?u = 0, outside the
cap, with

Ou/0r = —U cos 8 on both sides of the cap, (2.1)

so that Uz + u is the velocity potential for axisymmetric uniform flow past the cap; u is required to vanish as
r — o0o. Separation of variables gives the representations

u(r,0) = Uc>_ A,(r/c)"P,(cos0) for 0<r<c and
n=0

u(r,0) = Ucy  C,(r/c) "' P,(cos0) forr>c,
n=0

where P, is a Legendre polynomial and the dimensionless coefficients 4, and C, are to be found. Continuity
of Ou/0r across r = ¢ for 0< 0 < n gives nd, = —(n+ 1)C,.
Define the discontinuity in u across r = ¢ by

w(0)] = Tim u(r,0) ~ lim u(r,0)

o0

Uc Z(2n +1)%,P,(cos0),

n=0

where %, = A,(n +1)"". Using Eq. (2.1) and the fact that [u(6)] = 0 for « <0< gives
Zn(n+1)@/,,P,,(cosH) = —cosfl, 0<O<aq, (2.2)

n=0

NgE

2n+1)%,P,(cos0) =0, a<O<m. (2.3)

n=0

These form a pair of dual series equations for %, (Sneddon, 1966). To solve them, we use an integral
representation for %,

1 * . 1
U, = P /0 @(t) sin (n +§)tdt, (2.4)
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where ¢(¢) is to be found. This representation ensures that Eq. (2.3) is satisfied for any ¢, due to the
discontinuous sum (A.4). It also gives

Cw [ el
u(O)] = U /0 \/200s0—2costd

From this, we can readily show that we must have ¢(0) = 0, otherwise [#(0)] would be unbounded.
Substitution of Eq. (2.4) in Eq. (2.2) gives

- 1) [~ 1
; n;:j 1> /0 o(t) sin (n +§>tdtP,,(cos(9) =—cosf, 0<0<a,

t, 0<O<a.

an equation for ¢(¢). To solve it, we would like to interchange the order of integration and summation, so
as to obtain an integral equation for ¢; however, the resulting sum is divergent, so that we must proceed
indirectly. An integration by parts in Eq. (2.4) gives

22U, = /Oa ¢'(t) cos Lt dt — (o) cos 2,0, (2.5)
where 4, = n+ (1/2) and we have used ¢(0) = 0. Then, we write Eq. (2.2) as

iO:Z)LiQ/nP,,(cos 0) — % 2%”Pn(cos 0) =—2cosf, 0<0<a.
Using Egs. (2.4), (2.5), (A.3) and (A.5) gives

Ttﬁo{<p’(t) —% /a o(1) dr} =—2cosf, 0<0<o, (2.6)
where we have defined the Abel operator T by
’ p(1)de
0 V2cost—2cos0
This operator can be inverted: if T¢ = f, we can solve for ¢ as (Porter and Stirling, 1990, Section 9.2)
2d [° f(0) sinf
T nds 0o V2cosl —2coss

T =T.o{d(1)} =

(2.7)

¢(s) =T7'f = T2 {/(0)} do. (2.8)

Applying T~! to Eq. (2.6) gives

¢'(t) —% /la ¢(t)dr = —(4/m) cos (%t), (2.9)

which is to be solved subject to ¢(0) = 0.

One way to solve Eq. (2.9) is to differentiate with respect to ¢, leading to a second-order ordinary dif-
ferential equation for ¢ with constant coefficients. The general solution of this equation contains two ar-
bitrary constants; these are to be determined by imposing ¢(0) = 0 and by requiring that the solution of the
differential equation actually solves Eq. (2.9).

We shall use an alternative method, based on Laplace transforms. First, we write Eq. (2.9) in convo-
lution form as

o' (1) +% /Ol o(t)dr = %Ml — (4/m) cos (%t), (2.10)
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where M, = [ ¢(t)dt is an unknown constant. Next, we define

op) = {0} = [ olyerar (2.11)
0
where p is the transform variable. Then, taking the Laplace transform of Eq. (2.10), we obtain
P +hHop) =M — @4/m)p* /(P> +9),

whence

M, 1 1 9 1
)= (Tl+ﬂ>p2 1 Imp Ay
Inverting, using % {sin it} = f/(p* + f*), we obtain
o(t) = (MM, + ") sin(ke) — (3/n) sin(3r).
To determine M;, we substitute for ¢ in the definition of M, and evaluate the integral, giving
M, = —(4/m) sin o sin(jo)
and then
@(1) = (1/m) sec(3x) cos(3x) sin(3¢) — (3/m) sin(3r).

This solution agrees with the well known solution of Collins (1959).

3. Elastic field representations

For the crack problem, we start with representations for the elastic displacement # in terms of potentials.
From Lur’e (1964, Section 6.2), we have general solutions for three-dimensional elasticity, in spherical polar
coordinates (r,0, ¢), where u = (u,,ug,u,) is independent of the azimuthal angle, ¢. Thus, the following
representations can be obtained.

Interior solution: displacements

u, = {Ar" " (n+ 1)(n — 2 + 4v) + Bn" '} P,,
ug= — {4 (n+5—4v) + B 1P
Exterior solution: displacements
u, ={Cr"n(n+3—4v) —Dr"*(n+ 1)}P,,
ug = {Cr"(n—4+4v) — Dr"*}P..
Interior solution: stresses
Qu) ", = {d(n+ 1) (0> —n — 2 — 29" 4 Bn(n — 1)r" 2} P,,
) 'te = — {4 +2n — 1 +20)7" + B(n — 1) 2}P..
Exterior solution: stresses
Qu) 't = —{Cn(n* +3n—29)r " =D+ 1)(n+2)r "} P,
Q2u) 'ty = —{CH =2+ 20)r " = D(n+2)r " 3P
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All these solutions are valid for n =0,1,2,.... In them, v is Poisson’s ratio (Lur’e uses m = 1/v), u is the
shear modulus, P, = P,(cos ) and P! = P!(cos ) = P!(cos0) sin @ = —(d/d0)P,(cos 0); note that P} = 0.
Expressions for the other stress components are given on p. 330 of Lur’e’s book.

We consider a crack in the shape of a spherical cap, given by r =¢, 0< 0 < a and 0 < ¢ < 2n. Using
superscripts (1) and (2) for the regions » < ¢ and r > ¢, respectively, we have the following representations
for the displacements and stresses:

) = Ao(dv — 2)r+cf: [A,,(g)"“(n F1)(n -2+ 4v) +B,,(£)"ln}Pn, (3.1)
2 = —en(£) e[ (5) a3 -an -, (£) T ). (32

z)n+l(n+5—4v)+3n(£)nI}P,,l, (33)

|4
u§)2>:ci {Cn(g)”(n—4+4v)—D,,(;)HZ]P,}, (3.4)

2u) 't = —2(1 +v)4,
0 n n—2
+ A”(g) (n+1)(n2—n—2—2v)+Bn<£) n(n—l)]Pn, (3.5)
n=1

2u) < = 2D0(;)3 - i [C,,(;)Hln(nz +3n—2v) — Dn(g)"”(n +1)(n+ 2)]31,

Q)2 = -3 {Cn(g)nﬂ(nz —2+2) —D,,(g)n+3(n 4 2)}13;.

These formulas were obtained using 4 = ¢ "4, B = ¢*"B,, C = ¢"*'C, and D = ¢"**D,, where the coeffi-
cients 4,, B,, C,, and D, are dimensionless. These coefficients are to be determined by applying the boundary
conditions on r = c. The first of these is that the stresses should be continuous across » = ¢ for all 6, when

—(1 +V)A() :Do, (37)

A, (n+1)(n* —n—2—2v) +Bn(n — 1) = —Cyn(n* +3n — 2v) + D, (n + 1)(n + 2), (3.8)

A, (n* +2n—14+2v) +B,(n — 1) = C,(n* =2+ 2v) — D, (n +2), (3.9
for n=1,2,.... From these, we obtain

AC,=mn—-D{n+1)2n+3)4,+ (2n+ 1)B,}, (3.10)

(n+2)A,D, = 2n+ D{n(n+2)(n* = 1) +4 — 4*}4, +n(n — 1)(n +2)(2n — 1)B,, (3.11)

where A, = —2{n*> —n+ (2n + 1)(1 — v)}. In particular, C; = 0. Note that Eq. (3.11) reduces to Eq. (3.7)
when n = 0.
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If the material in » < ¢ is different from that in » > ¢, one obtains an interface crack on r = c. The
corresponding problem has been considered by Altenbach et al. (1995), using the representations given
above.

4. The crack-opening displacement

We define the crack-opening displacement [u] by

[u.(0)] = ugl)(c, 0) — uﬁZ)(c, 0) = ci(Zn +1)u,P, (4.1)
uo(0)] = u (¢, 0) — u (c,0) = cf:(zn +1)7, P, (4.2)

where the dimensionless coefficients %, and ¥, are to be determined. Comparing with the representations
(3.1)~(3.4), we find that %, = (4v — 2)4g + Dy = —3(1 — v)4,,

Cn+ DU, =4,(n+1)(n—2+4v)+Bn—Cin(n+3—4v)+D,(n+ 1),

—C2n+ 1), =4,(n+5—-4v)+B,+C,(n—4+4v)—D,.
Substituting for C, and D, from Egs. (3.10) and (3.11), respectively, we find that

(n+2)AU, = —2(1 —v){(2n +3)(n* — 2+ 2v)(n+ 1)4, + (2n — 1)(n + 2)nB,},

(n+2)A7 =21 =v){(2n+3)(n* + 3n — 2v)4, + (2n — 1)(n + 2)B,}.
We can rewrite these, giving 4, and B, in terms of %, and ¥,:

2(l =v)2n+3)4, = —(n+2) (U, +nV",),

2(1 =v)(2n — 1)B, = (n* +3n —20)U, + (n+ 1)(n* — 2+ 2v)7",.

We can now state the problem to be solved: find %, and ¥, so that

[4,(0)] =0 and [uy(0)] =0 fora<O<m, (4.3)
and

7,(0) = —pg-(0) and 71,9(0) = —uge(0) onr=c for0<0 < a, (4.4)

where ¢, and gy are given functions of 6. In particular, for uniaxial tension at infinity in the z-direction (so
that t° = py, say), we have (Lur’e, 1964, p. 343)

q,(0) = (po/p) cos* 0 and  qy(0) = —(po/ 1) sin 0 cos 0. (4.5)
Using Eq. (4.4) in Egs. (3.5) and (3.6) gives
_%qr = =2(14+v)4y+ Z {4,(n+1)(”* —n—2—=2v) + B,n(n— 1)} P,,

n=1

1 o0
30 = D2 (A + 20— 1+20) 4 By = )

Eliminating 4, and B, in favour of %, and 7", gives
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_%(1 —V)g, = ,120_0(): {2w2 = 1+ vQ2w, — )], + wa[w, + 1+ v(4w, — 5)]7",} 4W57"_3, (4.6)
—%(1 —V)qo = i {Wn + L4+ v{@w, = U, + [(wn + 1) (2w, — 3) + 3v]7/‘,,}4wf"_ 3 (4.7)

n=1

for 0< 0 < a, where w, = n(n + 1). These are to be solved subject to Eq. (4.3), wherein [«] is defined by Eqs.
(4.1) and (4.2). Of particular interest are the stress-intensity factors. We define these by

] ~ K,V2ar\/c(a—0) and [ug] ~ K;V2a+/c(a—0) as 6 — o—, (4.8)

where a is a length scale and K, and K| are dimensionless stress-intensity factors. It is convenient to take
a = csino, for we may then consider the limiting case of a penny-shaped crack of radius a, obtained by
taking the limits ¢ — oo and o — 0 with «a fixed.

The definitions of the stress-intensity factors in Eq. (4.8) are convenient, but not standard. For example,
it is usual to suppose that 7,, ~ K, /21" as p' — 0, where p’ is distance from the crack edge 0Q. Making
use of the known general relations between [u] behind 0Q and the stress components ahead of 0Q (see, for
example, Rice (1989, p. 32)), we find that

K, = luv/maK, /(1 ). (4.9)

This formula and the corresponding formula for K, can be used to obtain expressions for the standard
stress-intensity factors from the results derived below.

5. Reduction to integro-differential equations
We introduce representations (2.4) for %, and

“//nzm/omw(t) cos <n+%)tdt (5.1)

for ¥7,, where the functions ¢ and  are to be found. Substituting Eq. (2.4) in Eq. (4.1), followed by
evaluation of the sum using Eq. (A.4), shows that [u,.(0)] = 0 for 0 > «, as required, for any choice of ¢; we
also obtain

. [ (1)
1,(0)] = /0 20— ai 0<0<a (5.2)

[u,(0)] will be bounded provided that r~'¢(¢) is integrable near ¢ = 0, so that, in particular,
¢(0) = 0. (5.3)

Similarly, substituting Eq. (5.1) in Eq. (4.2), followed by use of Eq. (A.7) shows that [uy(0)] = 0 for 0 > o,
as required, provided that s satisfies

/0(X V(t) cos (;t) dr = 0. (5.4)

We also obtain

—c ” W(t) sint
up(0)] = — de, 0<0<uq 5.5
o 0)] 2sin0 Jy \/2cosh —2cost (5:3)

it turns out that [uy(0)] = 0, as expected from symmetry considerations.
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The stress-intensity factors, K, and K, can be expressed directly in terms of ¢ and , respectively. Thus,
from Eq. (5.2), we have

[1,(0)] ~ c(a) (sino) ' V2cos —2cosa as O — a—
with a similar approximation for [ug]. Then, comparison with Eq. (4.8) gives

k=2 gng g =0
s

in o 2sin o (5-6)

To obtain ¢ and yy, we substitute Egs. (2.4) and (5.1) in Egs. (4.6) and (4.7), and evaluate the series using
results from the appendix. To do this, we note the following partial-fraction expansions:

Qw2 —14vQ@w, = D] A S 65 1 |
it D@w,—3) 4 45, 8\A—1 i+l (57)
w, + 1+ v(4w, = 5) 03 1 1
=4 - .
dwy — 3 oty (1—1 An+1> (58)
wy, + 1+ V(4Wn - 5) - 501,1 52 353 1 1
n+1)(dw, —3) 2w, 8w,, + 16w, (in -1 + A+ 1) (59)
(wa+ )@wu=3)+3v 4 36/ 1 1 (5.10)
4w, — 3 T2 4\ =1 Q1) '

In these, w, = n(n+1), 2, =n+1/2,
do=3(1+4v), 6 =2%5+8v), d=73(1-8v) and & =(7—8v).
However, prior to substitution, we note that the first terms on the right-hand sides of Egs. (5.7) and

(5.10) will lead to divergent series. To overcome this, we first integrate by parts in Egs. (2.4) and (5.1). Thus,
making use of ¢(0) = 0, we obtain Eq. (2.5) and then

>0 1), % Rteost) = 5 [ o040~ 0l 0

n=0
1 @' (t)dt
V2cost—2cos0’
where f; is defined by Eq. (A.2) and we have used Eq. (A.3), noting that 0 < «. Similarly, we have

4w, 2,V = () sin L0 — / W' (2) sin 2,¢dt,
0

whence
0 TN
Z“// % P (cosB) = VA1) sindr )
8s1n0 0o V2cost—2cos0

where we have used Eqgs. (A.6) and (5.4). Use of these results, together with Egs. (2.4), (5.1) and (5.7)-
(5.10), in Egs. (4.6) and (4.7) gives

3000 = 3 Tl 0} + [ {0050 (50) 4 (0 Sl )}, (511)
%(1 —V)qp = ﬁﬂ_,g{xﬁ/(t) sint} + /Oa {p(2) 21 (85 0) + Y (2) Sxa(2; 0) }dt, (5.12)
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for 0 < 0 < o, where

. o1 03 1 1 '
) P, ).
St ;{41,, 8 <)»n—1+l,,+l>} . (cos 0) sin 4,2,
o 50 53 1 1
S22 s\ o1 nri)gh nt,
NP 2{44'8(),”_1 i,,—f—l)} . (cos 0) cos A,t

n=0
o~ [ Ok | 02 305 1 1 | sin 4,z
pm— -2 L P Sin /,t
S21 ;{ 2 +8in+16 (ﬂ“n_1+/1n+l)} n w, )
363 ! ! 1 COS Ayt
= - P cos Al
S2 16 (/ln 1,1 ) > (cos 0) ”

The Abel operator T and its inverse are defined by Egs. (2.7) and (2.8), respectively.
The sums S;; can be evaluated explicitly using results from the appendix. We obtain

! 0 1
Sy = 1 / fo(t;0) {8 — 3 cos(t — 1)} dt + — sin¢ sin (—9),
1), 2 2
— 60 . 53 ' . 1 53 1 1
Sp = Zfo(t’ 0) — T /0 Jo(z;0) sin(¢t — 7)dt — cost sin <29>,

1 t
sin 0S5 = 100/0(¢; 0) sint — d5 sinS(%G) sint + 3 / Sl (1;0) {0, + 355 cos(t — 1)} dr,

sin 08y = 3% / Sl (z;0) sin(t — ) dt — 3 sin (;0) (cos (;t) —sin (;0) cost>,

where f is defined by Eq. (A.8). Then, changing the order of integration gives

]’[Hg{/ta[él—53COS(I_T)](p(T)dT} s1n( )/
{50‘// +53/ V() sin(t — 7)dr }——sm(%)

(= g Toa [ 1o 30000500 - N o(o)ac

t

4;\»—

\/Oﬁ gD(t)Sll(l; O)d

/“ W(0) Sialt; 0)di =
Sll’l@/ S21 t 0

-bl*—‘

oo|>—~

1 1 *
+500 Tio{o(1) sint} — d5 sin’ (59) / (1) sin¢dt,
0

sin@/ilp(t)Szz(t;H)dt: —3—53?}%{/ Y(t) sin(t —7)d }+53sm( )/ Y(t) costdt,
0

where we have used Eq. (5.4) to obtain the last formula and the operator T is defined by

Thp=T_o{op(t)} = /09 ¢(t) V2cost —2cosOdz.

4767

) costdt,
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Using these results, we apply 47! to Eq. (5.11), giving

@' () + Sy (s) + I3 sins/oj{(p(t) sint — y(¢) cost}de + /1{51 —03cos(s — 1)} o(¢)de

+ 6 / () sin(s — ) dt = 0,(5) (5.13)

for 0 < s < o, where Q,(s) = —2(1 —v) T, ! {q,(0)} and we have used T, {sinl6} = (1/2)sins.

Next, we apply —8(sins)~ 'T-1sin6 to Eq. (5.12). To do this, we first calculate that

HHST,H(){(JS }7sms/ (1)

and 7, ! {sin’ 10} =2 sins sin’(s), whence

O0—s

W' (s) — 4800 (s) — 52{ /S o(t)tde +s/a o(1) dt} — 303 coss/a {o(t) sint — y(¢) cost}dt
— 305 /S Y(t)dt — 30, /l {o(t) sin(s — 1) + Y (t) cos(s — 1)} dt = Qy(s), (5.14)

for 0 < s < o, where Qy(s) = 4(1 — v)(sins) ™" 7, {go(0) sin 0}.

Egs. (5.13) and (5.14) have been obtained by Martynenko and Ulitko (1979), although few details were
given; see their Eq. (2.4), noting that our y is their (—4y). These authors considered all-round tension at
infinity.

For uniaxial tension at infinity, ¢, and g, are given by Eq. (4.5); elementary calculations, using Eq. (2.8),
then give

O,(s) = tn(cos(ds) +2cos(3s)) and Qy(s) = sin(3s), (5.15)
with n = —4(1 —v)po/(mp).

6. Solution of the integro-differential equations

Martynenko and Ulitko (1979) solved Eqgs. (5.13) and (5.14) (for all-round tension) by repeated dif-
ferentiation, leading to a pair of coupled homogeneous ordinary differential equations with constant co-
efficients, relating ¢, ¢”, ™, ¥/, ¥" and ). The general solution of this system contains 17 arbitrary
constants, and these were then determined by substituting back in Egs. (5.13) and (5.14), together with the
conditions (5.3) and (5.4).

Here, we solve Egs. (5.13) and (5.14) using Laplace transforms. First, we rewrite the integro-differential
equations in convolution form as

-‘r-(S()lp / {k“ S—[ )+k12(5‘—l) (t)}dt:gl(s), (61)
lp ( 450@ / {kz] S — l ) —+ kzz(s — l) (l)}dt = gz(S), (62)
where
kll(T) = 51 — 5'; COS T, klz(f) = 53 sin T,
kzl(’[) = 7521’ — 353 sin‘c, kzg(‘[) = 353(1 — COS ‘C),

g1(8) = O.(s) + 03M>rcoss — o1 My,  g(s) = Qp(s) + 303M, sins + s0, M,
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Mlz/ox(p(t)dt and Mzz/ou{(/)(t) cost+ () sint}dz.

Note that the constants M; and M, are unknown, as they depend on the solutions ¢ and .

4769

(6.3)

Next, we introduce @(p) = L{¢} and ¥ (p) = L{y}, the Laplace transforms of ¢ and , respectively,
defined by Eq. (2.11); we use upper-case letters to denote the Laplace transforms of other functions. Then,

taking the Laplace transform of Egs. (6.1) and (6.2) gives
(p—Kin)®+ (60 — Ki2) VY = Gy,
— (400 + K31)® + (p — Kn) ¥ = Gy + 1,
where 1/, = /(0) and we have used ¢(0) = 0. Hence
AP = (p — K»)Gi — (0o — Ki2) (G2 + ¥y,
AY = (460 + K>1)Gi + (p — K11 ) (G2 + W),
where 4 = (p — K1) (p — K») + (69 — K12)(4d0 + K»1). We have

] 53}7 03
K = — — K =
WP =" - Kl =
0y 353 303
K = —— — — K _ -
51(p) 2 Pil »(p) P
whence
(7 + 3R
Ap) =5 ;
P +1)
where

R(x) =x" =13 -8 )x+ 2.

Note that R(x) = 0 when x =3 — 2v? + 2ivy with y =1v3 — 42,
From Egs. (6.4)—(6.6), we obtain

o(p) = P& +1) = 35161 — 0o = 325G + )

(" + DR |
4(dop” — 02)(P* 4+ )Gi + [p* + (1 = 250)p” — 01|p(Ga + W)
¥(p) = 29 2 )
P+ R(P)
using 03 = dg + J, = d; — 2dy. Also, for uniaxial loading, Eq. (5.15) gives
G (p):"] p(p2+%) 53M2p2_51M1(]72+1)
‘ P +H>+3) P> +1) ’
_ 4 353M2p2 + 52M1 (p2 —|— 1)
G T R

Thus, it is convenient to write
®=nd+b, and ¥ =n¥ + ¥,.
We have
4>(p*)
(P> + DR’

p2 &/1 (p2)

YT E R )P DR

and @, =
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where

o1 (p*) = p° +1p*(9 — 16v) + Lp*(23 — 88v) — L(177 — 120v),

A(p*) = pH(p* — 300)0:sMa — p* (S0p” — 82) Py — {p*01 + P (81 + 602) — &M

Next, we split into partial fractions, as

o= A B G HYh
B S A R(p?) ’
B, (P +ID:+ (P - E
P =5+ 2 )
)2l u R(p?)
where
1 -3 25
A1_16(1+v)’ 31_16(1—\))’ C1_4(7—5v)’
D _ —v(3 4 5v — 10V?) £ 13 — 25v — 6V + 20v*
T a0 —w)(7 =5y T8I =) (T=5v)
By = — {165My — 4y — (3 + 8v)My )}
2 — 64(1*\)) 34Vi) 0 15
—V
D2 = m{1653Mz+4(3 —4V)l//0+ (13 —24V)M1},
1
E, = m{mm — 20)My — 4(1 + 6v — 82 )y — (51 — 14v — 48v7)M, }.
Note that
p—o0

Inverting the Laplace transforms, we obtain
@(t) = 2nd; sin(%) +2(nBy + B>) sin(3t) + Cy sin(3) + v=' (nD) + D,) cosh yt sin vt
+ 9 Y (yE| + E,) sinh y¢ cos vt, (6.8)

using #{coshyz sinvt} = v(p* +3)/R(p*) and L{sinhyr cosvt} = y(p* —3) /R(p?).
Similarly, for ¥, we have
B pA ()
Y= 2 1 9\ (2 4 25 2
P+ +PRP)

)
and ¥, = 7])'@2@ )

v+ DR’

where

B1(p*) = (5+4v)p* +Ip*(1 +2v) — (29 — 40v),
B,(p*) = (1 +v)(4p> — 3)0:Ms + {p* + (1 — 260)p* — 01 1,
— 21+ v){4(1 + 8v)p* — 3 + 40v}M,.

Splitting into partial fractions,
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p B3 n pCs | p(p* —y* +V*)Ds + 2pE;

P, =

A W)
w, — PBs PP’ =7 +v))Dy + 2pEy
2= S5+ > ,
Pty R(p?)
where By = — 9B, C; = —%C1, By = — 9B,
11 —13v v(L = 2v)(15 = 17v)
Dy= — ., E;= 7
3(1=v)(7—5v) 6(1 —v)(7 — 5v)
1
D4 = T){1653M2 +4(2 — 3V)lp0 — (3 + 8V)M1}7
Ey= 724(1 {16\)53Mz+4(3+2v— 612 Wo + (48 — 3v — 56v2)M1},

Inverting the Laplace transforms, we obtain
Y(t) = (nBs + By) cos(3t) + nCs cos(3t)

+ (D3 + Dy) cosh y cos vt + (yv) ' (nEs + Ey) sinh ¢ sin ve, (6.9)
using #{coshyt cosvt} = p(p* — > +1?)/R(p?) and Z{sinhyssinvi} = 2yvp/R(p*). Note that, setting
t =0 in Eq. (6.9), we obtain y(0) = y,, as expected, since B3 + C; + D3 = 0 and B, + Dy = .

6.1. Determination of M;, M, and

At this stage, we have expressions for ¢(¢) and y/(¢) involving the three constants y,, M; and M,. To
determine these, we use the definitions of M| and M,, Eq. (6.3), and constraint (5.4). We start by rewriting
Egs. (6.8) and (6.9) so as to display the three constants. Thus, we have

(1) = 1y (1) + (1 =) {Woho(t) + My (£) + Mol (1)}, (6.10)

W(e) = mpy (1) + (1= )" {holo(r) + Miby (1) + Mab(1)}, (6.11)
where

@, (1) = 24, sin(3r) + 2B, sin(3t) + 2C; sin(3t) + v~ ' Dy cosh yt sin vt + y~'Ey sinh yt cos vz,

U, (t) = Bs cos( 1) + Cs cos(3t) + D5 cosh yz cos v + (yv) "' E; sinh yt sin v,

ho(t) = {51n(3t) + (3 — 4v) cosh yz sin vt + 1y~ (1 + 6v — 8v?) sinh y7 cos e},

hi(t) = —5{(3 + 8v)sin(3r) + (13 — 24v) cosh yt sin vt + 17! (51 — 14v — 48v*) sinh y7 cos vt}

hy(t) = léz{sm( 1) — cosh yz sin vt + 1y~ (1 — 2v) sinh y¢ cos v},

Co(1) = Heos(3r) + (2 — 3v) coshyt cos v — 1y (3 + 2v — 6v*) sinh y¢ sin vr},

6 (t) = £{(3 + 8v)(cos(3t) — cosh yt cos vt) — 1y~' (48 — 3v — 56v°) sinh yt sin vr},

b(t) = —302{cos(3r) — coshyt cos vt +1(v/7) s1nh yt sin vt}.

Then, Egs. (5.4) and (6.3) give

3

ZA,‘ij = Ci, i= 1,2, 3, (612)

Jj=1

where X1 = Ml, Xy = Mz, X3 = lpo,
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cp=(1- v)n/(pldt, o =(1- v)n/(golcost+lp1 sint)dt, c;=—(1— v)n/n/;lcos%tdt,

A =1 —V—/h]dl, A]zz—//’lzdl, A13:—/hodl,

Ay = —/(hICOSf‘i’El sint)dt, Ay =1 —V—/(thOSt+£28iIlf)dt,

Ay = — /(ho cost + 4y sin¢)dz,

Az = /Zl CcoS (%t) dt, Az = /62005 (%Z‘) dt, Ay = /E()COS (%t) dr

and all the integrals are over the range 0 <¢< o; they are all elementary. Eq. (6.12) is a system of three
simultaneous algebraic equations for M;, M, and . Then, ¢ and  are given by Egs. (6.10) and (6.11),
respectively, the components of the crack-opening displacement [u] are given by Egs. (5.2) and (5.5), and the
stress-intensity factors are given by Eq. (5.6).

Rather than giving the explicit solution of system (6.12) (which is straightforward but tedious), we obtain
an approximate asymptotic solution for a shallow spherical cap.

7. The shallow spherical-cap crack

Suppose that the cap is shallow, which means that ¢ — oo and o — 0 with @ = c¢sina fixed. Then, the
stress-intensity factors are given by Eq. (5.6) in which o is small. We can solve the 3 x 3 system (6.12) in this
limit. We have

0, (1) =t+0F) and (1) =y +0(*) ast— 0,
making use of Eq. (6.7) and B; 4+ C; + D5 = 0; the constant y is given by
= =3By — BC + 37 = V)Ds + B3 = 3(5 + 4).

There are similar approximations for #;(¢) and ¢,;(¢), and these lead to small-o approximations for 4;; and c;.
Hence, we obtain

My =M, =1po? + 0(a*) and = —Lnje® + O(c*)
as o — 0. It follows that
0(x) = na+0() and Y(x) = Il + O()
as o — 0, whence
K,=n+0() and K,=-In(5+4v)a+0(c') asa—0 (7.1)

with n = —4(1 — v)po/(np). The leading-order term corresponds to the well-known stress-intensity factor
for a penny-shaped crack opened by a constant pressure; (Eq. (4.9)). The first-order correction is seen to
occur in the tangential component. We have derived this first-order correction by an independent method,
giving some credence to both approaches. In that method, we combined a perturbation expansion with an
exact hypersingular boundary integral equation for [u], the method being designed for cracks that are
perturbations of flat circular cracks, namely, wrinkled penny-shaped cracks (Martin, 2000).
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Appendix A. The Mehler—Dirichlet integral, sums and variants

The standard Mehler—Dirichlet integral is (Whittaker and Watson, 1927, Section 15.231)

0 cos(n+d)t

P,(cosb A.l
( )= v2cost—2cosf A1)
valid for n =0,1,2,..., and 0< 0 < n. Define 4, = n +1 and
. 2cost—2cosf) ? 0<t<0
6:0) =14 ) ) A2
fol5:9) {0, 0<t<m, (Aa-2)

so that P,(cos0) = (2/n) [ fo(;0) cos A,¢dt. Define fy(1;0) for 1<t < 2r by fo(1;0) = —fo(2n — t;0) and
then expand the resulting extended function as a half-range Fourier cosine series. The result is

oo

fo(t;0) =Y Pi(cosO) cosdt, 0<t, O<m, t#0. (A.3)

n=0

Such discontinuous sums are useful when solving dual series equations.
Replacing ¢ and 0 in Eq. (A.1) by (n—1¢) and (n—0), respectively, we obtain P,(cos0) =
(2/m) [y f1(£;0) sin A,¢dt, where

0 0<t <0,
Ni(50) = {(20050 2cost) ' O<i<m

Extending f) using fi(#;0) = f1(2n — ¢; 0) for n < ¢ < 21 and then expanding as a half-range sine series gives

fi(5;0) =Y Pi(cos0) sinfyt, 0<t, 0<m, t#0. (A.4)
n=0
From Egs. (A.3) and (A.4), we have
o0 ) t
> Reost) 2 = [ fimoar (A3)
n 0

n=0

ZP,,(CO 0) COS/L" / fi(r;0)d

n=0

We also have

fi(£;0) cost =+ f3(1;0) sint =Y P,(cos 0) sin(4, £ 1),
n=0

Jfo(t;0) cost F f1(¢;0) sint = ZPn(cos 0) cos(4, = 1)t,

whence

an Sm)iiiill / {fo(7;0) cost F fi(t;0) sint}dr = S,
n=0 K

and
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> Jn
ZP,,(COS@)COS(T / {fi(z;0) cost £ fo(t;0) sint}dr = ..
n=0
Thus
> in At R ot .
;P,,(cos 0) ilnni 7= FcostF €ysint, ;P,,(cos 0) ijsiAI =%_.cost+ ¥, sint.

In particular,

;(/{n—l—’_in—Fl)P’l(cose) Sin/lnt: (y++y7) COSt—((g+—(67) sin ¢

—Z/fo ) cos(r — t)dr — 4sint sin0,

- 1 1 .
;(/H An+1> . (cos0) cos At = (6 —€,) cost — (¥ + &) sint

t
= —2/ fo(z;0) sin(z — t)dt — 4 cos ¢ sin 10.
0

We need similar formulas involving P!. Use of the recurrence relation
(2n 4 1) P! (cos 0) sin @ = n(n + 1){P,_1(cos 0) — B, (cos 0)}
gives

2n+1
nn+1)

4 n
P!(cos0) sin0 = = / fo(t;0) sint sin J,¢d¢
0

—4 (" .
= _/ Sfi1(t;0) sint cos A,¢dt
T Jo

forn=1,2,.... It follows that

>0 1 1 1 sin ¢
n pl _ _ 1 _
E P! (cos 0) sin 1t = 2tan<20> sm<2t>+smef(t 0)

n=1 n
> 1 1 1 sint¢
2:: ! (cos 0) cos At = 2cot (§0> cos <§t) —mfl(t,H)
for 0 < t,0 < m, t # 6, where w, = n(n+ 1). Integrating Eq. (A.6) once gives

ZPI COSA":—tan( )cos( ) fO(te),

Wp sin 0

~

= |

where

1/2
() — 4 (2cost—2cos0) ", 0<r<0,
Joles0) {07 0<r<m.

Integrating again gives

smlt 1
Z n2tan(§0)sm( > smg/forﬁ
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Similarly, Eq. (A.7) gives

. sin A, TN (1LY A0
ZP,,(COSH) — —cot(20> s1n(2t “end

n
where

Lm0, 0<t <0,
f‘(t’e){(Zcos(?—2cost)l/2, 0<t<m.

We also have

- i +1 1 1
sin@nZ;Pnl(cos@) WZ (1 4 cos 0) sin (Et) cost F (1 —cosB)cos (§t> sin¢
— f1(t;0) cost + £, (;0) sint,
- A t1 1 1
sin();Pnl(cos@) %ﬂ)t: —(1 —cos0)cos <§t> cost F (1 + cos ) sin (§t> sin ¢
+ £ (£;0) cost + £ (¢; 0) sint,
whence
N sin(/l,,jzl)t_/’ " L o (1
smH;Pn(cosﬂ)iwn(inil) =/ {fo(;0) cost + f(z;0) sint}dr — (1 — cos 0)  sin 5!
1. /1 . (1 1. /1
+§s1n (§t>> F (1 +cos0) (sm (51) — 3 sin <§t))
=9,
and
N cos(Z, = 1)t P L 1
smf);Pn(cosH)m——t {£!(z;0) cost F £ (t;0) sint} dr + (1 4 cos 0) [ — cos 5!
1 1 1 1 1
+§cos<§t>>$(l—cos€))<cos (§t>+§cos (7))
=%\
Thus,
N sind,t -
SIHO;P” (cos ) Ot &, costF €, sint,
N cos iyt -
smO;PH (cos 0) = 1) =%, ,cost+ & sint.

In particular,
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) = 1 1 in A,t .
sm@nz:; (i,,—1+1n+ 1>Pnl(c050)suvlv— (yiﬁ—yl,) cost + (‘61, —fgi) sint

t
:2/f61(r;0) cos(t — 1)dr
0
16 ., /1 1. /1 . (1 .
+? sin (50) (5 sin (§t> — sin <§9> smt>,
COS A, t

sinHZ (ﬁ—ﬁ)&l(cos@) = (6" —%") cost — (7} + ") sint

n=1

t
= Z/fol(r;@) sin(t — 1) dt
0
16 ., /1 1 . 1
+? sin (50) (cos (51) — sin (§0> cost).
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